Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5MKE_1)}(2) \setminus P_{f(5UAN_1)}(2)|=127\),
\(|P_{f(5UAN_1)}(2) \setminus P_{f(5MKE_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000010100110100111101101101111011111011111110000110101001001110011111110101110000001100001110100000010100111110101010110000110011001110001111001110101000000001110101111101100011101011011110011011011110011000000000010011001100111111101100111000100000110011100110000000100100100110100101101101010100000100001110001111110100101001000110010001000001001000001111100101110000001010001111100011100101000000011011010001110010010110101001010110110111011101111101010110110010010111110011101111001100110101001001001100101111110111111010000010111011000001101001101010100111101111110110110100010010001000100111111111111110101101111001001001000110010111101011010010011111010011111111110111111000000100011000101010011001000111010100001001000100111010100100010101000101011100000010001000000010001000000101000011011000011001000000000001000000101001100001011100100100011011001011110101100101000011101101110000110000100001001100010010000110010011101111010101000010000000110111101000101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1333
}{\log_{20}
1333}-\frac{365}{\log_{20}365})=251.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5MKE_1
5UAN_1
313
215
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]