Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7QRD_1)}(2) \setminus P_{f(6ZTC_1)}(2)|=132\),
\(|P_{f(6ZTC_1)}(2) \setminus P_{f(7QRD_1)}(2)|=63\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100011000000001100101010100000110001001000011100000100011101101011101111011100101101001100101110000100011111101001011001011100111011100011000101000101010111011010111100001010010010110010101101011011110001001110010101111001000101101001010010111010110011101111110111110110111001100110010010011001111011001010011110000000101110100010000011010011100010010111100000100011001000010
Pair
\(Z_2\)
Length of longest common subsequence
7QRD_1,6ZTC_1
195
4
7QRD_1,7BBJ_1
154
3
6ZTC_1,7BBJ_1
215
4
Newick tree
[
6ZTC_1:10.84,
[
7QRD_1:77,7BBJ_1:77
]:32.84
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{578
}{\log_{20}
578}-\frac{200}{\log_{20}200})=108.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7QRD_1
6ZTC_1
143
107.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]