Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6KGV_1)}(2) \setminus P_{f(7VYZ_1)}(2)|=108\),
\(|P_{f(7VYZ_1)}(2) \setminus P_{f(6KGV_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1111010101001011101011000000111010101101010010001001000001110100010011001110100010111110010000011011011011110110100101110000100011101110111110101011111000101111100101000010011111100000001101001110100010101000100100101100101111010010111110000101000110010001101110011011010011110111001100100110111010111101001100111100001111000011011100011100000110011110001111110011111110010100110111101101011010110011100110111011010111010000010100101101001001001101110001110001011011111001110010100101101001001011011111010010011111100110000111100111110011111100001110101111111010
Pair
\(Z_2\)
Length of longest common subsequence
6KGV_1,7VYZ_1
144
4
6KGV_1,8BAW_1
166
4
7VYZ_1,8BAW_1
136
3
Newick tree
[
6KGV_1:80.66,
[
7VYZ_1:68,8BAW_1:68
]:12.66
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{876
}{\log_{20}
876}-\frac{314}{\log_{20}314})=152.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6KGV_1
7VYZ_1
187
143
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]