Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7QOF_1)}(2) \setminus P_{f(8HAN_1)}(2)|=174\),
\(|P_{f(8HAN_1)}(2) \setminus P_{f(7QOF_1)}(2)|=31\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:111011010111100101100000111110011001001110111100100100110011000100000001011100000111101000011111101101111001101111001110101111010010110111010101001100101111000111100100100101011110001000110101001101000100101000111001000111111110010010010001011100101010101000000111110000010100101100101100111110000110010000101011001100101001110001111001001110100011001011001110000001100100010001101110110001101101010101100011000110111111100000110110100101100010100000100111001101001010101000011100110111011010001011111101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{639
}{\log_{20}
639}-\frac{135}{\log_{20}135})=145.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7QOF_1
8HAN_1
188
117.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]