Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4OQS_1)}(2) \setminus P_{f(9EOQ_1)}(2)|=214\),
\(|P_{f(9EOQ_1)}(2) \setminus P_{f(4OQS_1)}(2)|=7\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1010000100110110101110110111011011110110110101111100011100111010100010000111011101111001111111101011000000011100101001001010110100001011101111101101111111011100111100100111000001110100000010011101000110111000101000111011000010000100111111111000010111110111100100111100101100110010110110100111001010101100100111111110001011001011010010100011111110001100110101011100111011010111110010100001101111111110101011100101000110000100110000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{475
}{\log_{20}
475}-\frac{42}{\log_{20}42})=134.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4OQS_1
9EOQ_1
175
94.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]