Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1WLX_1)}(2) \setminus P_{f(4JME_1)}(2)|=53\),
\(|P_{f(4JME_1)}(2) \setminus P_{f(1WLX_1)}(2)|=118\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000101100101001001111001100110010011110010010111010001000110100000111110001001100001010100100010101100010010011100001110000000
Pair
\(Z_2\)
Length of longest common subsequence
1WLX_1,4JME_1
171
4
1WLX_1,8YYP_1
171
4
4JME_1,8YYP_1
146
3
Newick tree
[
1WLX_1:89.27,
[
4JME_1:73,8YYP_1:73
]:16.27
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{431
}{\log_{20}
431}-\frac{129}{\log_{20}129})=90.6\)
Status
Protein1
Protein2
d
d1/2
Query variables
1WLX_1
4JME_1
114
82
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]