Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7QBM_1)}(2) \setminus P_{f(6WGT_1)}(2)|=53\),
\(|P_{f(6WGT_1)}(2) \setminus P_{f(7QBM_1)}(2)|=131\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:011001000001010110001001001110011110101000010110101001100100001011101001100100001100001010110000010010101100010001101000110011101111011101010010100011000000000010011111101100100011100011001100101111000001011101101101
Pair
\(Z_2\)
Length of longest common subsequence
7QBM_1,6WGT_1
184
4
7QBM_1,5HJR_1
226
4
6WGT_1,5HJR_1
166
4
Newick tree
[
7QBM_1:10.89,
[
6WGT_1:83,5HJR_1:83
]:25.89
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{664
}{\log_{20}
664}-\frac{216}{\log_{20}216})=126.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7QBM_1
6WGT_1
160
117.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]