Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3WFU_1)}(2) \setminus P_{f(8CAU_1)}(2)|=32\),
\(|P_{f(8CAU_1)}(2) \setminus P_{f(3WFU_1)}(2)|=175\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110010100110111010101110100111011010100100100100100010101000100010111011111100010001010111000100001110010110011101100001101110101110011011000111000011101
Pair
\(Z_2\)
Length of longest common subsequence
3WFU_1,8CAU_1
207
4
3WFU_1,6ICS_1
112
4
8CAU_1,6ICS_1
193
3
Newick tree
[
8CAU_1:11.92,
[
3WFU_1:56,6ICS_1:56
]:54.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{645
}{\log_{20}
645}-\frac{153}{\log_{20}153})=141.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3WFU_1
8CAU_1
183
118
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]