Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7OIJ_1)}(2) \setminus P_{f(4FCQ_1)}(2)|=189\),
\(|P_{f(4FCQ_1)}(2) \setminus P_{f(7OIJ_1)}(2)|=10\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000000000000001100001010111011111100110110000000111011110110101110001010010011100100011101100101011001000100001000000100101111110111000010101100100110001011110110010010010100100010010001110000111101100011101010101101111010001111010101000010101000011111110110001011001110010001101010000101001100100100010011010101100001111000000111010010101111110010010110100110101101001010001011101111010011000100001010001110001010101001101101011101110010010000000001001111101111000001001000101110110001011011101010100001111110110111011011110011011001001010000010100110001010100000011101000100011011101111001000001101101100110111101101101011000110111001001000011001101101100000100010011110111000110111101000101101110111110100010000101110010110010110011010000000100001101010000010110010011010011001010000110001011111000001101101111100100100011010110110111000110101010101101000111011100001101010000111011100011101100001101100110010100110011001111100000011100010110101101110100011100001111100011011001000000010010100001001100011111011111011111010000010010001111000001100101010011000100010111001000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1320
}{\log_{20}
1320}-\frac{236}{\log_{20}236})=286.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7OIJ_1
4FCQ_1
365
220
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]