Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ECE_1)}(2) \setminus P_{f(8CPO_1)}(2)|=94\),
\(|P_{f(8CPO_1)}(2) \setminus P_{f(6ECE_1)}(2)|=60\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000001010110001101010110101011011111111111101110101100101110101101111111001101010011010000111111011011101111011101101110011010111110011011011110101000000111111111111000001100110001001110010001010111000010011010100110000111100010111011000001101101101100011101011011100101101101001101100001110001101
Pair
\(Z_2\)
Length of longest common subsequence
6ECE_1,8CPO_1
154
3
6ECE_1,1LLO_1
185
3
8CPO_1,1LLO_1
161
3
Newick tree
[
1LLO_1:89.71,
[
6ECE_1:77,8CPO_1:77
]:12.71
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{510
}{\log_{20}
510}-\frac{207}{\log_{20}207})=87.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ECE_1
8CPO_1
104
88.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]