Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7MSK_1)}(2) \setminus P_{f(2AGH_1)}(2)|=212\),
\(|P_{f(2AGH_1)}(2) \setminus P_{f(7MSK_1)}(2)|=6\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001101001001100100001000110010110100000010110100000100111000011010100111000000010001001100100111100000000001100011110110011100101000011010000110010100001000001001101101101001101110001101000000110100110101010001101010110010101110001001011010000000101000110001001011010100100100000110011101101000000000010111110011100001001000101100101100010000011110010100101100100001000000110000001011110100010010111011001000010001100100100010001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{455
}{\log_{20}
455}-\frac{25}{\log_{20}25})=135.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7MSK_1
2AGH_1
171
90.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]