Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4FNN_1)}(2) \setminus P_{f(6CPI_1)}(2)|=101\),
\(|P_{f(6CPI_1)}(2) \setminus P_{f(4FNN_1)}(2)|=27\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:001110101110001011100000010011001110001100000110010010010000100111001100111100111001011010110111010110111011100100111101101100111011111110000010100010101011001001100100001
Pair
\(Z_2\)
Length of longest common subsequence
4FNN_1,6CPI_1
128
3
4FNN_1,3MJC_1
160
5
6CPI_1,3MJC_1
178
3
Newick tree
[
3MJC_1:90.45,
[
4FNN_1:64,6CPI_1:64
]:26.45
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{232
}{\log_{20}
232}-\frac{61}{\log_{20}61})=56.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
4FNN_1
6CPI_1
71
47
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]