Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7MCN_1)}(2) \setminus P_{f(8RUQ_1)}(2)|=131\),
\(|P_{f(8RUQ_1)}(2) \setminus P_{f(7MCN_1)}(2)|=36\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000011011000000011100110000001000110100100000010100001001110100100111100111110111111001001110001011000110011001110101100000001101101000111100100111010010001011000111011000110100001101110111001000111000111111100000110011110000111111000011101100111010010001101101101011100110101000100010110101001111101000001001101000001100111100110111110010111010100110011101011100000110010011001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{515
}{\log_{20}
515}-\frac{135}{\log_{20}135})=111.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7MCN_1
8RUQ_1
143
95
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]