1REA_1|Chain A|REC A|Escherichia coli (562)
>1UGW_1|Chains A, G|Agglutinin alpha chain|Artocarpus integer (3490)
>2OBQ_1|Chains A, C|Hepatitis C virus|Hepatitis C virus (3052230)
Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(1REA_1)}(2) \setminus P_{f(1UGW_1)}(2)|=115\),
\(|P_{f(1UGW_1)}(2) \setminus P_{f(1REA_1)}(2)|=38\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000011111110100011010110110000101001001010101111111111101101011000100010101111100010001110100110110100111010011000100100110100111001110111100111101010101011000111110110011001110100000111110010101111110100001101101010101010011110010011100001011000111110010101101011010101101110001100111100001001101010101110001001001000100111001000101010000111000001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{485
}{\log_{20}
485}-\frac{133}{\log_{20}133})=104.\)
Status
Protein1
Protein2
d
d1/2
Query variables
1REA_1
1UGW_1
129
88.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]