Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7MBV_1)}(2) \setminus P_{f(4FDA_1)}(2)|=180\),
\(|P_{f(4FDA_1)}(2) \setminus P_{f(7MBV_1)}(2)|=20\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000010001110110101011000010110100000110100110001111110111111110011010111000100111011000111110011011100011011000011000101011111111101100001110101001100100011011100100000011110001001110101010110010100010110101011110111010101100100010001111111101111011101100101010110011100110110000100100110011001011010010000010011101110100000001001100101111100101100011010101010010011101110001011011100110100110010100100010000110011100000001011000101010001100010101001001100110000011000111001101011000001101000000110011111110000011001111110111111110011001101100100100100100001110110000000000100111000001001011011011010011100110111001111110000010011101111111100110101000100001011101001000011110010111101010011000010110111001001101110111101110111111100111101011110110110111011110111001000110000101100101010001000011110111111000111000011001111011110101101111000111011110011001111111101111101100011101001010111001100101011101110010110110000000100111101110101010111111111011100111101111110001011000101110100001110000011111111110010011101100000000110001101100011010010000011010000000010010000001001101111100000011010001000101101110010000100000110110011100000010110000111011010000111100
Pair
\(Z_2\)
Length of longest common subsequence
7MBV_1,4FDA_1
200
4
7MBV_1,6HBU_1
122
4
4FDA_1,6HBU_1
170
4
Newick tree
[
4FDA_1:10.20,
[
7MBV_1:61,6HBU_1:61
]:40.20
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1438
}{\log_{20}
1438}-\frac{273}{\log_{20}273})=303.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7MBV_1
4FDA_1
385
235.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]