Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ZOB_1)}(2) \setminus P_{f(8JZE_1)}(2)|=187\),
\(|P_{f(8JZE_1)}(2) \setminus P_{f(6ZOB_1)}(2)|=26\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101110011111111111111111111011110010111111010100111010010001001100010110011010000000101010101001001011010100010111111100100011010000001111111100010100001000111010011000011101011100011011101001001010110110110100101111011101110100101011100010000011011101000100111001101011100001110101011011110110110110011110101101011110110110100001110101001100110111111111011100101011101111111110111111111010010111111111111001111100100111001111001000011010111111111101111111111100111000101011011110111111101110101101110100101001111110011000000000011111000100111011111111011101100111000011110110111110000000110010000100000010011110111111010001111101001100110000101101010011001001111110111110110101101011001111000100100011101100101100101011000101010100001011110100100011111110010011001010010110010001110011010101101011110110000100101010000111010111011110001011011001100110111001011000001010011010110111111011110001011101111111111111111010110001010111100111010011111011001100010111010101101010111100111111111111001110110011101111111010111111111111110001000000100000100010000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1241
}{\log_{20}
1241}-\frac{184}{\log_{20}184})=283.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ZOB_1
8JZE_1
356
208
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]