Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6WHS_1)}(2) \setminus P_{f(4KDQ_1)}(2)|=151\),
\(|P_{f(4KDQ_1)}(2) \setminus P_{f(6WHS_1)}(2)|=28\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10010110111110001101100101101111100000001100110010000101010101001000101101110100011000101111001101000101011000111001111110001010000010101100111000000111011010010011111000001011000100110000000000000010010000001101001101011000101111010010101111010000110100111110101010111110001010110011011111011010000101001111110110011000010011010110001100111100111000010110101010001000110001101000011011100100111000011111100001010010001011010001110101010010000010101011001100110000110100011000011010111011001010001011101011000010000000101111011010101111110100001001010011000110111000110001001101100011111110101111110110010111010100000000110100111101111100111011100101011111111111111100010111111100100010110010100100011010100001010100010100100010000000110110110000101111001110101000001100101110011111100001100010101100000111001000110000000000111010000111111111111111111111011000000100001011111101100010000010101010001010110001100100000000000111011100000011100110000101010000000
Pair
\(Z_2\)
Length of longest common subsequence
6WHS_1,4KDQ_1
179
4
6WHS_1,4WKH_1
152
5
4KDQ_1,4WKH_1
165
3
Newick tree
[
4KDQ_1:89.17,
[
6WHS_1:76,4WKH_1:76
]:13.17
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1280
}{\log_{20}
1280}-\frac{321}{\log_{20}321})=251.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6WHS_1
4KDQ_1
322
213.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]