Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7JYB_1)}(2) \setminus P_{f(4RNY_1)}(2)|=76\),
\(|P_{f(4RNY_1)}(2) \setminus P_{f(7JYB_1)}(2)|=67\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000000000011110100110101111110010100110001101101001001101100110011111010000001111011111000100111101111010101011101001001011101101101000010101100000001000110110011010110101001010010110111001011101110001100111001010101101111110011010001100100101110101110001001101100110010000101100010010001000111100100001011101111111101101011110100111010001011100111010101001001101111111010101110110010111101110011110101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{775
}{\log_{20}
775}-\frac{371}{\log_{20}371})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7JYB_1
4RNY_1
137
131
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]