Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9CZO_1)}(2) \setminus P_{f(5XCB_1)}(2)|=181\),
\(|P_{f(5XCB_1)}(2) \setminus P_{f(9CZO_1)}(2)|=11\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101111110101100001001111111001101111111111100100110100001100001001001000101010110000011110111100100111111010010101111111110111111011000011000001000101010111011111011101111000111110100110110111111010100011110110110110100110110110000010110110111001101111101100010110010000110010010111101001101010100011011111111111111100110110111000001100011010001110101010010011001100000010101111001010101011100010010100101101001101010010101111000010101001001101101000010101100110000010110110101001001101101011111000110110011101101001101000010000101100010000100111110110100101101011111100001000001110110010100101111110010010011100010000100100100010001000010010100000011100010001011000111111000100100010000001110101100100111000011101101011101110100111110011111010010000100111110100100010010011010111101100101011010100101110100001000010000011101010010100011110100011011110000100011011100101001101111001100001011000000010001010011101011110110011010010001101100110111010101111000110110001001100000011011110111101101100101100110000110111001001010010000000110011001011100111011010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1381
}{\log_{20}
1381}-\frac{325}{\log_{20}325})=274.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9CZO_1
5XCB_1
353
227.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]