Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7EVD_1)}(2) \setminus P_{f(3LRK_1)}(2)|=73\),
\(|P_{f(3LRK_1)}(2) \setminus P_{f(7EVD_1)}(2)|=93\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100111101101100110011001000001010000000100001000011110110110101111010111101110010110110001111000110011011000100111111001000110010111110011110101110110001000111011101011100100101110001101001001001111100011101100010011100100101111011101010101111101011011001111100011110111100000010001011000101000110001010010011110101110011011001000111111101011100110001110100010110000110011001100100110001000001011000001001000100110100010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{904
}{\log_{20}
904}-\frac{425}{\log_{20}425})=127.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7EVD_1
3LRK_1
165
154.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]