Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8GHB_1)}(2) \setminus P_{f(6IFZ_1)}(2)|=89\),
\(|P_{f(6IFZ_1)}(2) \setminus P_{f(8GHB_1)}(2)|=66\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00000010001011011111010000101111100101010101011010000100011001111011010000111001110001010111101011110001101001101101010111001101100000001000001001101001111011100000111010100000101010101111011100100110010010010011110001110010001000011000110110111100000110011110110010101000100101101011110111101101000011111111010101010111101011010010101111001111111100110000101001000110001110111110100111101110111101000101000100011001111001100111101011001110100001011001100111111111010011011011100101110110000011010101011000100111001000111101000001001101011000100111001010101111011001011110000010110111011010010101110101000010111110000001011010111001000100100010100001011000101001000101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1426
}{\log_{20}
1426}-\frac{668}{\log_{20}668})=190.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8GHB_1
6IFZ_1
241
229.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]