Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7EBF_1)}(2) \setminus P_{f(2NAS_1)}(2)|=194\),
\(|P_{f(2NAS_1)}(2) \setminus P_{f(7EBF_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0000001100110100001010001101001100101000001001001100010101001000010011011000010001010111101101101100100101011000001000001010110011001100100111101100000000010100000100101011011110100101110111010011100111110100011100001011101111100010011110101011100111110000011011000100000011111001011011111101000110100111100010001110110011100100100000011100100010110000000100110010100101010110100100000110001110101111010111100111001010011011011110011100101010100111100000010011011011011011110001111001000000111010100100101001101100001011001011101101110001111011000010000101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{666
}{\log_{20}
666}-\frac{110}{\log_{20}110})=161.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7EBF_1
2NAS_1
206
121.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]