Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6WAD_1)}(2) \setminus P_{f(8VST_1)}(2)|=125\),
\(|P_{f(8VST_1)}(2) \setminus P_{f(6WAD_1)}(2)|=78\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100100001001111011010000011000111001000000000100000001010001110010001001111001111010011011110111011010111001011010111001001101011000101111110010110010111001110111000110011010001100111111101011111100011010111100100001101001011100011100011101101001110100110101001110001011111010000010111011111101011110000111100011011001001110100110100000101010111000010010111000110000000011100
Pair
\(Z_2\)
Length of longest common subsequence
6WAD_1,8VST_1
203
4
6WAD_1,6BDX_1
164
4
8VST_1,6BDX_1
169
3
Newick tree
[
8VST_1:96.88,
[
6WAD_1:82,6BDX_1:82
]:14.88
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{641
}{\log_{20}
641}-\frac{265}{\log_{20}265})=105.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6WAD_1
8VST_1
133
113.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]