Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7BVF_1)}(2) \setminus P_{f(2BYJ_1)}(2)|=98\),
\(|P_{f(2BYJ_1)}(2) \setminus P_{f(7BVF_1)}(2)|=41\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100010000001001111111010100111011111111101101111110001110110010110101111010110101011001101111111111101100100101011111101001010000111101100010010000101000011011011110010111100111010101011111001011111111101010001000100101111111111011111111010010101011011101101100111100111101001010011111111110111100000101111101100110100010111010011110001111100100101110110111111011110001110111110100110111111110111110011010111111011001110001000010111111101110111010111111111111011101110000111011110111111011101111000100110100101011100110000100001111010101000111110110110111111000011011011110111111101111110100110011111111111111001110101101000011111111111110110001110100011110011101011010011111111111011110111011101011011001111111111111111011111100010000110010111110111001110100011110110100101111111111011110101110001101111010011000010110010011101001111011011011111000011000001101101110100101111101110111001101001100111001111111111110111001010010110010110101110111101110010101001111011011010010001100011110111111110001110101110110101010001001000010010011111100111010111001000110011010010011011110101101000111011010111011110110000000000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1555
}{\log_{20}
1555}-\frac{439}{\log_{20}439})=284.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7BVF_1
2BYJ_1
353
245.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]