Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8ANW_1)}(2) \setminus P_{f(4PRX_1)}(2)|=70\),
\(|P_{f(4PRX_1)}(2) \setminus P_{f(8ANW_1)}(2)|=88\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110011001101110101100000110001011100001111011001100111100010000110000000001001110110111101000010001001111101000001010001011000010101011101010000010110010011011111101001000010000010110001111101011011110100010011101110001000110010011010011111101100001001000101010100101101011011100111100000101100011000
Pair
\(Z_2\)
Length of longest common subsequence
8ANW_1,4PRX_1
158
4
8ANW_1,4TNT_1
205
3
4PRX_1,4TNT_1
195
8
Newick tree
[
4TNT_1:10.11,
[
8ANW_1:79,4PRX_1:79
]:27.11
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{698
}{\log_{20}
698}-\frac{300}{\log_{20}300})=109.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8ANW_1
4PRX_1
136
120.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]