Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7AXZ_1)}(2) \setminus P_{f(4FEI_1)}(2)|=202\),
\(|P_{f(4FEI_1)}(2) \setminus P_{f(7AXZ_1)}(2)|=18\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:101100000001000100000001010100000100011111010011100000001011010100100101001100000111111010000000101001011001001110011010010100100010011101000010011110101100101010000111100000101000101001000110100011110110100111101011000110110000101010000010011001010000001100101010001110111001100110111101000000110000001000011111100000001010001110000000100100111111110111110000010101110100011110001101111001000111100001000111011111100001000010101111011111110000011100011101001101011100101000000100111000100101111011010011010110101100011011001001101100010101000000001010001010000001000100101101011110010010110011000011011000100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{711
}{\log_{20}
711}-\frac{102}{\log_{20}102})=175.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7AXZ_1
4FEI_1
222
127.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]