Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3RFU_1)}(2) \setminus P_{f(8IQP_1)}(2)|=171\),
\(|P_{f(8IQP_1)}(2) \setminus P_{f(3RFU_1)}(2)|=35\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000100001010100000001000010001011110001101010001110011011110100101001101001010001111111011111101110110011010100110111101111111111100110010010101101111111111100111111111110110000111110101111100111110110101000010110111011100100100010000101001111011010110011101010010011000110101111100101011110100010111011011000111011011001000011100110010111111111111101111111110111001111110111110101111101101111110110011110010110010010011100010100101010011000110001111111100000011101110110001101101011011010111101010011110101100011001111001001010110111111010011111100110000100110100011011110100000101111011100111011100000110010001111111101100111110101111110100111001110110101011101001000010010001111110011111111111011011110111111111100101110110100101
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{915
}{\log_{20}
915}-\frac{179}{\log_{20}179})=203.\)
Status
Protein1
Protein2
d
d1/2
Query variables
3RFU_1
8IQP_1
251
155
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]