Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(7ASU_1)}(2) \setminus P_{f(5KGK_1)}(2)|=143\),
\(|P_{f(5KGK_1)}(2) \setminus P_{f(7ASU_1)}(2)|=44\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110000011100101011001100101100110110100001101010101000010101110010100000010011101011010000000001100001000000000000111100010101011011101010100100101000000110011000000100010010101001000010000100001100001001110100011000000000001101100110000110010001111111000000001111001101101001111001011100101111101101111010011110110011111010111000110100000100111101100100111101000011100011010010100100110011110100110111100101100010110000111011010100100110001100101001111110100010110001000011100010000001011111111010001100010000000100011000101100011011111011100010101101010011100101110101000111010010011010110111100110110001100011111000111111100110100001111100101000000111011000001000110001000010010000100110000100111101010100
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{984
}{\log_{20}
984}-\frac{276}{\log_{20}276})=190.\)
Status
Protein1
Protein2
d
d1/2
Query variables
7ASU_1
5KGK_1
244
168
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]