Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5CPL_1)}(2) \setminus P_{f(4QGA_1)}(2)|=126\),
\(|P_{f(4QGA_1)}(2) \setminus P_{f(5CPL_1)}(2)|=66\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111010010010100011111100011001110010010010110111111110101111010101101111001010111111011011101111011011001010011010001110010110011101111110110110110100110100011011001001110110101101011001100000000010110100000111001111001110011101011110001000001000101100101111011010111011000111111111111001000101110011111010110111010010110110101101011011100111001010111101011000001000000
Pair
\(Z_2\)
Length of longest common subsequence
5CPL_1,4QGA_1
192
3
5CPL_1,1WFL_1
206
3
4QGA_1,1WFL_1
156
2
Newick tree
[
5CPL_1:10.77,
[
4QGA_1:78,1WFL_1:78
]:27.77
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{576
}{\log_{20}
576}-\frac{205}{\log_{20}205})=106.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5CPL_1
4QGA_1
135
105
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]