Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6YLN_1)}(2) \setminus P_{f(5HHZ_1)}(2)|=62\),
\(|P_{f(5HHZ_1)}(2) \setminus P_{f(6YLN_1)}(2)|=125\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11001001101111111010101010010101010101001010101100010111111011001011100110010010000110011101010000111000100000101010100110010101101000101110010000100010101000001101010100010011101100000001110111111000010000110001000000111101101111011100100000000
Pair
\(Z_2\)
Length of longest common subsequence
6YLN_1,5HHZ_1
187
4
6YLN_1,1APU_1
161
4
5HHZ_1,1APU_1
158
4
Newick tree
[
6YLN_1:89.82,
[
1APU_1:79,5HHZ_1:79
]:10.82
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{769
}{\log_{20}
769}-\frac{245}{\log_{20}245})=145.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6YLN_1
5HHZ_1
178
131
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]