Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3ELB_1)}(2) \setminus P_{f(8WKD_1)}(2)|=134\),
\(|P_{f(8WKD_1)}(2) \setminus P_{f(3ELB_1)}(2)|=47\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:01110011011001000110010000100101110011111000001100011111000000011011011001111110100100100000010101001010101000000100110000000001100001110111100100000010000000100110011100110110011000001101101001011001101111101101101011001001100101111101000100001000111010000101110001001111110110101100101011001000111000100100010001110010010010001110011000100
Pair
\(Z_2\)
Length of longest common subsequence
3ELB_1,8WKD_1
181
4
3ELB_1,6REE_1
191
3
8WKD_1,6REE_1
132
4
Newick tree
[
3ELB_1:10.44,
[
8WKD_1:66,6REE_1:66
]:34.44
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{533
}{\log_{20}
533}-\frac{192}{\log_{20}192})=98.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
3ELB_1
8WKD_1
127
97
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]