Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6WWR_1)}(2) \setminus P_{f(8AJQ_1)}(2)|=174\),
\(|P_{f(8AJQ_1)}(2) \setminus P_{f(6WWR_1)}(2)|=22\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000101011011101101010100100110101011000011110001001100011100110111101010110010010000110100110100011000101000110011011100100110000110111110011110101100111001010010000101010111010011101000110000010000011110001100100001010010000100110011001010101011101010010001110101011110011110100100001011010010101100110001001001100110010111001011110100000101101010110111000110111110110100110110000111011101000101101001110101101100101001000111100000011100101010001000
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{583
}{\log_{20}
583}-\frac{132}{\log_{20}132})=131.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6WWR_1
8AJQ_1
169
107
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]