Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4MWV_1)}(2) \setminus P_{f(5NQN_1)}(2)|=160\),
\(|P_{f(5NQN_1)}(2) \setminus P_{f(4MWV_1)}(2)|=30\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0010010011001001010100011011000011100010100010000101100100101000010100000001110111001101000010011100000001000101010110001011110000111010011001100000001000110111100101011100010010010110100101010010000001000110000000101000111010111100000010011100010100101100001011000011011001011001110010010001001101101100000011010011101010100101100110100001010101101010000111000011010000011101011011010011
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{521
}{\log_{20}
521}-\frac{133}{\log_{20}133})=114.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4MWV_1
5NQN_1
147
96.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]