Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6WCA_1)}(2) \setminus P_{f(5PIB_1)}(2)|=95\),
\(|P_{f(5PIB_1)}(2) \setminus P_{f(6WCA_1)}(2)|=91\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100100100110011001110000011011000001101001110111011111100001010001000100111001110110111101111100011011100000111101101101011100101110110111111110101111111011111011011011010100010011000011111101111011111101111110011110111110100101100001110001010110110101001100001011001101111011110100001101001000101011111010110111011011011111110001110100100111110010111111111100000111001000100101000111110110111100111001001010111110001111101110101011111000110010111101101111011111011111111010110111010011111010001000111110
Pair
\(Z_2\)
Length of longest common subsequence
6WCA_1,5PIB_1
186
5
6WCA_1,3UUZ_1
190
3
5PIB_1,3UUZ_1
204
3
Newick tree
[
3UUZ_1:10.34,
[
6WCA_1:93,5PIB_1:93
]:7.34
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{868
}{\log_{20}
868}-\frac{364}{\log_{20}364})=135.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6WCA_1
5PIB_1
169
148
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]