Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8HQK_1)}(2) \setminus P_{f(3HYN_1)}(2)|=111\),
\(|P_{f(3HYN_1)}(2) \setminus P_{f(8HQK_1)}(2)|=52\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10101001000111101100101101100100100100000000110101110011100000100110110010000000101110010000001111000100110100100111001101101000010001001111001100111000010001011000001010000000110001100100011111110011100011011101011010111101010000010010111001010000111001100000001110111110001101011010011101010101011101100001010001010101110100100100011001101001111101010001100001001101100110101011010111111000111011100111110000111100011010000011000010010001010001001110110110
Pair
\(Z_2\)
Length of longest common subsequence
8HQK_1,3HYN_1
163
4
8HQK_1,2XWM_1
142
4
3HYN_1,2XWM_1
169
3
Newick tree
[
3HYN_1:86.64,
[
8HQK_1:71,2XWM_1:71
]:15.64
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{647
}{\log_{20}
647}-\frac{189}{\log_{20}189})=130.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8HQK_1
3HYN_1
157
113.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]