Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6VOM_1)}(2) \setminus P_{f(4PZI_1)}(2)|=189\),
\(|P_{f(4PZI_1)}(2) \setminus P_{f(6VOM_1)}(2)|=28\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:110101001001100010100001011001011011011101011001111011010010111110100001111111011110010010101011011100101101101110110101010100001100111111000010011001111101111110100011110000100111000110001001101011110010011011001000111000111100100110100111001111100110000001110001000101000101110011100101101101000110011010011101010111110001101010110011010010111010110111011101110100110110101100111010101101101011101100100100001101001001100100111010001101001001010010100100011010001000010100110000010001011100110001001110001
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{574
}{\log_{20}
574}-\frac{67}{\log_{20}67})=151.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6VOM_1
4PZI_1
186
105.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]