Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5PIG_1)}(2) \setminus P_{f(5HFU_1)}(2)|=43\),
\(|P_{f(5HFU_1)}(2) \setminus P_{f(5PIG_1)}(2)|=111\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000000001101100010100100100010010010001111010000100100011010001100111101111001010000001001111011001101011110000000011011000011000000011000100100001000100011011010101100000010110110100110000111101100101011110001110000101001001011010010111100100100110011110001011110001111010110001111001000110111011010011100110010110110101100101100000101010101011101101000011001000
Pair
\(Z_2\)
Length of longest common subsequence
5PIG_1,5HFU_1
154
9
5PIG_1,1JLD_1
200
4
5HFU_1,1JLD_1
244
4
Newick tree
[
1JLD_1:12.88,
[
5PIG_1:77,5HFU_1:77
]:43.88
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1287
}{\log_{20}
1287}-\frac{364}{\log_{20}364})=240.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5PIG_1
5HFU_1
272
192.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]