Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5AWO_1)}(2) \setminus P_{f(8QUQ_1)}(2)|=129\),
\(|P_{f(8QUQ_1)}(2) \setminus P_{f(5AWO_1)}(2)|=40\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001101101011111011111011000011000111100101010011001111000101010111101101100110001110100000101010000001000110110011100101110001111001110010001110101011011111011100111001011010001100010101001001111010101101000100101101011010100011101100111001010111101100101011010110101010011100101100010011101101101101100001010111010110100110000000110111111011111000001100111000001101010111101100010110001100000011101101011111100000001000101100111101101001100001110001011111010111010110101000011111111111110000110010111011011010101110111011001001100001010100001010100100001011101011111010011110101010111011011011000111010110101
Pair
\(Z_2\)
Length of longest common subsequence
5AWO_1,8QUQ_1
169
4
5AWO_1,4LKL_1
175
4
8QUQ_1,4LKL_1
160
4
Newick tree
[
5AWO_1:87.92,
[
8QUQ_1:80,4LKL_1:80
]:7.92
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{957
}{\log_{20}
957}-\frac{347}{\log_{20}347})=163.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5AWO_1
8QUQ_1
209
161
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]