Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6VLR_1)}(2) \setminus P_{f(3FUR_1)}(2)|=120\),
\(|P_{f(3FUR_1)}(2) \setminus P_{f(6VLR_1)}(2)|=56\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1001110100111110010001101001010000000111000011001010010100100010110001100100011011000101010101101010000100010001010100001010001000000100110010110100001000000000001100000110010101010111100011111111000000101011010100100001101110001110101100011100001000100111010011010000100000001011110110101011101001000100101000110110010001100011011000110101000010011011000001110001100001010000100001011001001101100110110111101110010010111100011000000001011110100010001000011010111111000000111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{747
}{\log_{20}
747}-\frac{272}{\log_{20}272})=131.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6VLR_1
3FUR_1
164
130
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]