Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(4FHC_1)}(2) \setminus P_{f(8XYX_1)}(2)|=88\),
\(|P_{f(8XYX_1)}(2) \setminus P_{f(4FHC_1)}(2)|=80\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10000000110000110000101011110111101101010110011100100010011101000000001011110001100001000111110001010000101001111101011000000100011001010101010011101000100011010010110000111100100010011011110001010110000010011010001000101010000110010110001010111100111110011111111000011001010110011001011010010101100010011001100001000101000000001100111001000001001000100010011111010010
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{746
}{\log_{20}
746}-\frac{368}{\log_{20}368})=102.\)
Status
Protein1
Protein2
d
d1/2
Query variables
4FHC_1
8XYX_1
133
132
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]