Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6VDT_1)}(2) \setminus P_{f(5XSE_1)}(2)|=57\),
\(|P_{f(5XSE_1)}(2) \setminus P_{f(6VDT_1)}(2)|=80\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11000110101010001001111110001000001000110000010011011000001101110110010001111001001101000011001010011111100101010010000100110011011001110
Pair
\(Z_2\)
Length of longest common subsequence
6VDT_1,5XSE_1
137
5
6VDT_1,1YIC_1
126
3
5XSE_1,1YIC_1
143
3
Newick tree
[
5XSE_1:72.20,
[
6VDT_1:63,1YIC_1:63
]:9.20
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{345
}{\log_{20}
345}-\frac{137}{\log_{20}137})=63.5\)
Status
Protein1
Protein2
d
d1/2
Query variables
6VDT_1
5XSE_1
78
64.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]