Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(9AXC_1)}(2) \setminus P_{f(8YOZ_1)}(2)|=238\),
\(|P_{f(8YOZ_1)}(2) \setminus P_{f(9AXC_1)}(2)|=13\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:10111101010111010011100100000001000001001000010111011011001010101000111100110000111101000101011011110100110011000010010101100110110110001000001010010010111001101110101101011101101000101110100010000011111011010111100110000010011110000111010000001010100000001010100111000110101101001010101110110110101001011000111100000101111110100001111001001001000101000010110110110001011001010011000100001110011010110111101000101000100101011111101101000011010001000111100110101100010000011111101010101001000010110011100100100001111011001011000110100010010100110000101001000101111
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{645
}{\log_{20}
645}-\frac{82}{\log_{20}82})=165.\)
Status
Protein1
Protein2
d
d1/2
Query variables
9AXC_1
8YOZ_1
212
119.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]