Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6TWF_1)}(2) \setminus P_{f(2XYF_1)}(2)|=200\),
\(|P_{f(2XYF_1)}(2) \setminus P_{f(6TWF_1)}(2)|=18\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1101011000010001000000000010100011111011001001001010111101100001011101001101101101100011111000100110111011100101111010101011110010110110011111001111110000001110011001110001011010100100101001111100110100111001011011111000011001011000111100111100001001111010111001101010100010110001011110001100101010100101010000000110011010100000010000110110011100010010011100101011011110011000001010100111111111010110101001001100010001000101101111011001000110011010110000011000110100100111101110110110110001100001000101100010010110111010101010000000
Pair
\(Z_2\)
Length of longest common subsequence
6TWF_1,2XYF_1
218
4
6TWF_1,1PXA_1
164
3
2XYF_1,1PXA_1
196
3
Newick tree
[
2XYF_1:10.91,
[
6TWF_1:82,1PXA_1:82
]:27.91
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{631
}{\log_{20}
631}-\frac{99}{\log_{20}99})=155.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6TWF_1
2XYF_1
202
118
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]