Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(3MCF_1)}(2) \setminus P_{f(8AZP_1)}(2)|=61\),
\(|P_{f(8AZP_1)}(2) \setminus P_{f(3MCF_1)}(2)|=84\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1000110101000000011110000010011111111010001111110010001110101101111100000100000101101001100100010110000110100110110000110100100101000000
Pair
\(Z_2\)
Length of longest common subsequence
3MCF_1,8AZP_1
145
4
3MCF_1,7NBL_1
104
2
8AZP_1,7NBL_1
129
2
Newick tree
[
8AZP_1:73.32,
[
3MCF_1:52,7NBL_1:52
]:21.32
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{315
}{\log_{20}
315}-\frac{136}{\log_{20}136})=55.1\)
Status
Protein1
Protein2
d
d1/2
Query variables
3MCF_1
8AZP_1
71
60.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]