Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6RGK_1)}(2) \setminus P_{f(9FGD_1)}(2)|=63\),
\(|P_{f(9FGD_1)}(2) \setminus P_{f(6RGK_1)}(2)|=93\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100110010000101100011001100101100100011110011010100101011010000001101111110011110111001100001110111000000001100010011010001001100101000100100111110111001001110001010000111110010100011010000111011001000110110110001110011001110011001011011110110000001110010101110110100100110100011111000100010100001101111100000101101011110111111100110101011010100100001010011000
Pair
\(Z_2\)
Length of longest common subsequence
6RGK_1,9FGD_1
156
3
6RGK_1,5VCL_1
193
3
9FGD_1,5VCL_1
191
6
Newick tree
[
5VCL_1:10.29,
[
6RGK_1:78,9FGD_1:78
]:23.29
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{824
}{\log_{20}
824}-\frac{360}{\log_{20}360})=125.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6RGK_1
9FGD_1
160
142
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]