Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6ORT_1)}(2) \setminus P_{f(8ILT_1)}(2)|=78\),
\(|P_{f(8ILT_1)}(2) \setminus P_{f(6ORT_1)}(2)|=94\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:0110111000001100001011111011100001011100001000001101010100111110011010001000110001100011000100100010111110110010101110110000011000010000001000111010100010111101010001111001111110010010110000100100110100011111000100110101010001011111000111010111010101110110110010000010000011000011010100
Pair
\(Z_2\)
Length of longest common subsequence
6ORT_1,8ILT_1
172
4
6ORT_1,1UDL_1
160
4
8ILT_1,1UDL_1
154
4
Newick tree
[
6ORT_1:84.97,
[
1UDL_1:77,8ILT_1:77
]:7.97
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{541
}{\log_{20}
541}-\frac{255}{\log_{20}255})=81.3\)
Status
Protein1
Protein2
d
d1/2
Query variables
6ORT_1
8ILT_1
96
94
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]