Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(8EXO_1)}(2) \setminus P_{f(1UOR_1)}(2)|=135\),
\(|P_{f(1UOR_1)}(2) \setminus P_{f(8EXO_1)}(2)|=29\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:100000000000011000010101111010111101111011100111011110100100101101000110010001100110000001110100010000110000010010110111011011001010110000011000111111111001011001010010001101000110100100100011010110100010110010001001011111111101000000001010000110011101100000011100001010110001001101010000110001100000100011110110111110001000111001011000001001010101000000111100110101101001010100100101001100110110001000011000101001100010110110110101010010100110000011111010110000011010111011111011001101111010010000101010101100110110101100010101000111000011100011000010000000101100001100100000011100000010110111011101010000011010011001111010011011000010111011110010001000010001101101100000100111011100110000110111101000100001000111110000010110100100010110011010011000000000010101110010010110110111011011001101010000110010011110100101100111000011100100100011010110110011000110101110101011001111011000001101000111011101000010011000001010011101100001100110111111000000111000101101011011000000110000011111000111110011000000001001001000101110001011101101111011101001001101000111000000110011001001001110
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1665
}{\log_{20}
1665}-\frac{585}{\log_{20}585})=270.\)
Status
Protein1
Protein2
d
d1/2
Query variables
8EXO_1
1UOR_1
355
268
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]