Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6MTZ_1)}(2) \setminus P_{f(2CWJ_1)}(2)|=149\),
\(|P_{f(2CWJ_1)}(2) \setminus P_{f(6MTZ_1)}(2)|=39\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:1100000010100100101010100110001100100001001001010100110111000000111110010101001001000100001000010101100010100110010101100000100110011000011101000011011101100101100010110110101011000001001110000000010110010001110011110000110100111110100001001000100011010000001000000111000111101110111000101010101010101010101000100100101011100010110101100010000100010011001
Pair
\(Z_2\)
Length of longest common subsequence
6MTZ_1,2CWJ_1
188
3
6MTZ_1,5MXU_1
174
4
2CWJ_1,5MXU_1
216
4
Newick tree
[
2CWJ_1:10.56,
[
6MTZ_1:87,5MXU_1:87
]:18.56
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{478
}{\log_{20}
478}-\frac{123}{\log_{20}123})=105.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6MTZ_1
2CWJ_1
136
91.5
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]