Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(5HOP_1)}(2) \setminus P_{f(7JRV_1)}(2)|=48\),
\(|P_{f(7JRV_1)}(2) \setminus P_{f(5HOP_1)}(2)|=107\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:00110010011010101101000010111100010100001100101111000100000001011111110010010001110100010110100100111010001101010001011000010011010011011000010000110111111101001111111101000110001111001110100110111110110000000110010111010000011111101001101100010101
Pair
\(Z_2\)
Length of longest common subsequence
5HOP_1,7JRV_1
155
4
5HOP_1,4GTM_1
171
5
7JRV_1,4GTM_1
146
4
Newick tree
[
5HOP_1:84.26,
[
7JRV_1:73,4GTM_1:73
]:11.26
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{757
}{\log_{20}
757}-\frac{248}{\log_{20}248})=140.\)
Status
Protein1
Protein2
d
d1/2
Query variables
5HOP_1
7JRV_1
178
131
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]