Let \(P_w(n)\) be the set of distinct subwords (intervals) in a word \(w\).
Let \(p_w(n)\) be the cardinality of \(P_w(n)\).
Let \(f(c)\) be the sequence in FASTA with 4-symbol Protein Data Bank code \(c\).
\(|P_{f(6LCV_1)}(2) \setminus P_{f(1ZVK_1)}(2)|=106\),
\(|P_{f(1ZVK_1)}(2) \setminus P_{f(6LCV_1)}(2)|=37\).
Let
\(
Z_k(x,y)=|P_x(k)\setminus P_y(k)|+|P_y(k)\setminus P_x(k)|
\)
be a LZ76 style (set of subwords) Jaccard distance numerator for \(P(k)\).Hydrophobic-polar version of Sequence 1:11100001010101011011011101001110110101110001100010011000010110111011101001100011111101110011110101001110111010000010010101011110101111101100101101010011000001111010111010010000000110100100010000111100111101001011000000110111011101101001011011100100110110101111001101000111011111001001111100111011100110011001110100110111000011101110001001100110111010011101111101000011110001001111101111010101111111110110111101000011111011000110001010010011101011110111101100001101100100100000000000010101110110010011001111110100110011101111111100001010110110011000011010111000100110111001110011001100101110001111011011111010100100010001101000011011110011001011101110001110011100110100001011010011010110100111100111111100111111111111001101100010001010010111011011100111111000111110000000
Pair
\(Z_2\)
Length of longest common subsequence
6LCV_1,1ZVK_1
143
5
6LCV_1,3UAC_1
140
4
1ZVK_1,3UAC_1
161
4
Newick tree
[
1ZVK_1:78.07,
[
6LCV_1:70,3UAC_1:70
]:8.07
]
Let d be the
Otu--Sayood
distance d.
Let d1 be the Otu--Sayood distance d1. (This makes the 4TYN sequence AAAAAA a close match...)
A roughly speaking expected distance is \((0.85)(0.8)(\frac{1128
}{\log_{20}
1128}-\frac{358}{\log_{20}358})=202.\)
Status
Protein1
Protein2
d
d1/2
Query variables
6LCV_1
1ZVK_1
241
177
Was not able to put for d Was not able to put for d1
In notation analogous to
[Theorem 16, Kjos-Hanssen, Niraula and Yoon (2022)],
\[
\delta=
\alpha \mathrm{min} + (1-\alpha) \mathrm{max}=
\begin{cases}
d &\alpha=0,\\
d_1/2 &\alpha=1/2
\end{cases}
\]